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We study the divergent behavior of W gravity theories, As a tool, we use the 
Grothendieck-Riemann-Roch theorem on the compactified moduli space. We 
show that Wn gravity has severe divergences caused by negative masses. However, 
for superextension of W, gravity the divergences by negative masses are 
miraculously cured by the counterpart contribution of superpartners. 

1. INTRODUCTION 

The Virasoro algebra has played an important role in the understanding 
of string theory and conformal field theory. On the other hand, over the years 
there have been many attempts to generalize theories of classical and quantum 
gravity to higher spin extensions which include fields of spin greater than 2. 
The high-spin extension of Virasoro algebra is known as W-algebra (Zamolod- 
chikov, 1985; Fateev and Lukyanov, 1988). When W-algebra serves as a 
gauge algebra to two-dimensional gravity, W gravity theory is obtained (Mat- 
suo, 1989; Hull, 1990; Pawelczyk, 1991). A well-known example based on 
Zamolodchikov's W3 algebra is W3 gravity. Since W-algebra seems to be a 
fundamental symmetry in two-dimensional gravity, the study of W-gravity 
theories is very important. 

For a theory to be a consistent quantum field theory, it should satisfy 
certain criteria; for instance, the absence of anomaly and the disappearance 
of divergences caused by negative masses. 

Let us take the example of bosonic string theory, which contains a 
spectrum of various states, including tachyons. If we take a long, thin tube 
of constant diameter and total length L, we can canonically quantize it on 
slices of constant time. Then the loop amplitude will be the trace over Fock 
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space of the amplitude e -e"L, where E, is the energy of states n. For the 
lowest energy E0 -< 0, the integral f dL e -~~ will diverge. 

A few approaches are known for studying the divergence behavior 
of 2D theory over a long, thin tube. Among them a powerful tool is the 
Grothendieck-Riemann-Roch theorem on the compactified moduli space 
(Harshorne, 1977; Deligne and Mumford, 1969; Mumford, 1977; Harris and 
Mumford, 1982). Since it was fully explained in Kwon (1991), here we only 
briefly sketch the outline. 

First, an important point is that the appropriate g-loop thin-tube geometry 
can be identified with the compactified moduli space Sg to g-genus. The 
compactified moduli space Sg is the moduli space of stable curves. The 
boundary [A] = S - S is the union of components [A] = A0 . . . . .  Ag/2 
containing surfaces with nodes of degree 0 -< i -< [g/2]. 

Second, the negative mass pole in the vacuum-to-vacuum amplitude has 
a direct relationship with a nonvanishing Chern class on ~r The nonvanishing 
Chern class means the existence of a pole on the boundary of S, which 
implies the existence of a negative mass pole (Kwon, 1990, 1991). To evaluate 
the Chern class on S, we can use the Grothendieck-Riemann-Roch (GRR) 
theorem on the compactified moduli space. The theorem can be given as 
follows: 

Cl(d(W~")) = (6n 2 - 6n + l)C~(detf ,  Wf) - [n(n - 1)/218 (1) 

Here d(L) = det( f ,L)  | det(f , (L -I | Wy)), f is  the map from the universal 
curve of moduli space to moduli space, Wf is the relative canonical bundle 
o f f  on the compactified moduli space, and 8 is the compactified divisor class. 

In this paper our strategy to study the divergent behavior of W gravity 
is to evaluate the Chern class on S~, using GRR theorem. 

2. W GRAVITY 

First let us consider W3 gravity. The action of W3 gravity for a spin-2 
gauge field h__ and a spin 3-gauge field B___ in two-dimensional Euclidean 
space with coordinates X -+ = cr • ix coupled to i = 1 . . . . .  n real scalar 
fields ~b i is given by (Matsuo, 1989; Hull, 1990; Pawelczyk, 1991; Schoutens 
et al., 1991a,b; Ceresole et al., 1968) 

_ 1  f d2x [~ O+~iO-(~ i ~ h--O+tbiO+d~ i 

' ] - - j  a___a+r162 ok 

I = 

(2) 
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If d qk satisfies the quadratic relation 

di(Jkdl)mi = ~(jk~l)m (3) 

the action is invariant under the following local t_(x +, x-)  transformations 
and local h__(x +, x-)  transformations: 

~(~i =. e_O+f~i .4_ ~k__O+~O+dpkdijk 

~ h _ _  = O_e_ - h__O+r + ~__O+h++ 

+ (~.__O+B__ - B___O+O+~.__)O+fbiO+~ i 

~B___ = r - 2B___0+r 

+ O_h__  - h__O+k__  + 2h__O+h__ (4) 

Now let us quantize W3 gravity. For gauge fixing, the symmetries can be 
used to choose the conformal gauge h__ = 0, B___ = 0 locally. Since the 
action is invariant only on shell, the quantization procedure of Batalin and 
Vilkovisky can be used. 

The ghost action for W3 gravity is given by 

S gh = ~ d2x  (b++O_c_ + u+.~.O_v__) (5) 

where b++, c_ are the usual conformai antighost and ghost, while u+++, v__ 
axe the antighost and ghost for the ~. symmetry. 

By (2) and (5), the partition function for W3 gravity can be obtained, 
and is proportional to 3 

Z ~ Idet Vol-mldet V2121det V3 12 (6) 

This is the square modulus of a section of a line bundle 

B = L - ' ~  • P2 • P3 (7) 

where L, P2, and P3 are the line bundles associated with the operators V0, 
V2, and V3. The Chern class for each line bundle can be evaluated by the 
GRR theorem; 

CI(P2) = 13Ct(L) - (8) 
C,(P3)  = 3 7 C t ( L ) -  3~ 

The absence of anomaly requires the value of m to be m = - 100, which 
can be determined by (8)-(i). However for m = -100 ,  the line bundle (7) 

3The full geometrical structure of the measure to W gravity theories is not known and only 
the measure by ghost and matter sectors will be considered. 
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develops a nonvanishing Chern class -48 .  As explained, the nonvanishing 
Chern class for the line bundle (7) implies that there is a pole on the boundary 
of S. So we can expect some badly behaved divergence by negative masses 
in W3 gravity. Now it is quite natural to ask whether the situation of the 
divergent behavior is improved in Wn gravity. The answer to this question 
is "no." To see this, let us consider Wn gravity. The line bundle whose square 
modulus of a section is the partition function of Bin gravity is given, using 
the Batalin and Vilkovisky method, by 

B = L -rm2 X " "  X P~ (9) 

By the requirement of the absence of anomaly, the critical value of m 
is given by the first part of the GRR theorem. But it can be shown that for 
the value of m, the degree of nonvanishing Chern class, which can be obtained 
by the second part of the GRR theorem, grows more rapidly as n gets larger. 

Physically this can be understood in the following way. As the large- 
spin particles are included in the theory, the energy spectrum contains some 
large negative value. Therefore, as we have seen the divergent behavior of 
the bosonic string on the long, thin tube, the large negative masses cause a 
severe divergence. This is what we saw using the GRR theorem. 

It can be expected that since supersymmetry does not allow the energy 
spectrum to have a negative mass, the supertheory should not develop any 
pole on S. 

To see whether our conjecture is true or not, let us consider the superex- 
tension of W, gravity. In the case of super W~ gravity the line bundle can be 
given in the following way (we consider only N = 1 supersymmetry): 

B = L -m~ • (E~) ma X ((53/2)13) -1 X P2 • ((Ss~)v)-I 

X P3 X ((S7/2)8) -1 X P4 X �9 X ((S(2n_l)/2)ff I X Pn (10) 

Here E,,  ($3/2)~, ($5/2),, etc., are the line bundles associated with operators 
Vm, V3rz, V5/2, etc., whose Chern class is given by 

1 1 
C,(E.)  = --{  C,(L) + 

C l ( ( S 3 1 2 ) o l . )  = ~ Cl(L) - "~ 8 

C,((Ss,2),~) = 4-~ CI(L) - I-~ 8 

(11) 

The critical value of m is given by 
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- - m  + 6k - = 0  
4 k=2 

(12) 

As expected, the above value of m does not develop any nonvanishing 
Chern class 5, which proves our conjecture. 

Physically this means that as the large-spin particles are included in the 
theory, the energy spectrum contains some large negative value; however, 
the divergences by negative masses are miraculously cured by the counterpart 
contribution of superpartners. 

3. CONCLUSION 

It has been shown that super-W, gravity would not develop any nonvan- 
ishing Chern class, which would imply no tachyon poles. The GRR theorem 
can be a powerful tool to distinguish the divergent behaviors of a theory 
without calculating loop diagrams in 2 dimensions. Using the GRR theorem 
effectively, one can construct new theories without divergence terms. 
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